Chemistry
 Standard level
 Paper 1

Wednesday 7 November 2018 (afternoon)

45 minutes

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [30 marks].
The Periodic Table

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$			Ato	mic numb	er												$\begin{gathered} 2 \\ \mathrm{He} \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathrm{Li} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.01 \end{gathered}$		Relativ	e atomic	ass							$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \text { C } \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{0} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \text { Al } \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.07 \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \text { Ar } \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.87 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \text { Mn } \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \text { Fe } \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.69 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \text { Zn } \\ 65.38 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ 72.63 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \text { Se } \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathrm{Kr} \\ 83.90 \end{gathered}$
$\begin{gathered} 37 \\ \mathrm{Rb} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \text { Zr } \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.96 \end{gathered}$	$\begin{gathered} 43 \\ \mathrm{Tc} \\ \text { (98) } \\ \hline \end{gathered}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathrm{Rh} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{array}{\|c\|} \hline 47 \\ \mathbf{A g} \\ 107.87 \end{array}$	$\begin{gathered} 48 \\ \text { Cd } \\ 112.41 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \mathrm{Sn} \\ 118.71 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.76 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{array}{\|c\|} 54 \\ \mathbf{X e} \\ 131.29 \end{array}$
$\begin{gathered} 55 \\ \mathrm{Cs} \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.33 \end{gathered}$	$\begin{gathered} 57 \dagger \\ \text { La } \\ 138.91 \end{gathered}$	$\begin{array}{\|c\|} \hline 72 \\ \mathbf{H f} \\ 178.49 \end{array}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.84 \end{gathered}$	$\begin{gathered} 75 \\ \mathrm{Re} \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.23 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathrm{Pt} \\ 195.08 \end{gathered}$	$\begin{array}{\|c} 79 \\ \text { Au } \\ 196.97 \end{array}$	$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{TI} \\ 204.38 \end{gathered}$	$\begin{gathered} 82 \\ \text { Pb } \\ 207.2 \end{gathered}$	$\begin{gathered} 83 \\ \text { Bi } \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (209) \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \text { Fr } \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	$89 \ddagger$ (227)	$\begin{gathered} 104 \\ \mathbf{R f} \\ (267) \end{gathered}$	$\begin{gathered} 105 \\ \text { Db } \\ (268) \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ (269) \end{gathered}$	$\begin{gathered} 107 \\ \text { Bh } \\ (270) \end{gathered}$	$\begin{gathered} 108 \\ \text { Hs } \\ (269) \end{gathered}$	$\begin{gathered} 109 \\ \mathbf{M t} \\ (278) \end{gathered}$	$\begin{gathered} 110 \\ \text { Ds } \\ (281) \end{gathered}$	$\begin{gathered} 111 \\ \mathbf{R g} \\ (281) \end{gathered}$	$\begin{gathered} 112 \\ \text { Cn } \\ (285) \end{gathered}$	$\begin{gathered} 113 \\ \text { Unt } \\ \text { (286) } \end{gathered}$	$\begin{gathered} 114 \\ \text { Uug } \\ (289) \end{gathered}$	$\begin{aligned} & 115 \\ & \text { Uup } \\ & \text { (288) } \end{aligned}$	116 Uuh (293)	117 Uus (294)	118 Uuo (294)

$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.12 \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Pr} \\ 140.91 \end{gathered}$	$\begin{gathered} 60 \\ \text { Nd } \\ 144.24 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ (145) \end{gathered}$	$\begin{gathered} 62 \\ \mathrm{Sm} \\ 150.36 \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \text { Tb } \\ 158.93 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.93 \end{gathered}$	$\begin{gathered} 68 \\ \text { Er } \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm} \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.05 \end{gathered}$	$\begin{gathered} 71 \\ \text { Lu } \\ 174.97 \end{gathered}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
$\begin{gathered} \text { Th } \\ 232.04 \end{gathered}$	$\begin{gathered} \mathrm{Pa} \\ 231.04 \end{gathered}$	$\underset{238.03}{\mathbf{U}}$	$\underset{(237)}{\mathbf{N p}^{2}}$	$\begin{gathered} \mathrm{Pu} \\ (244) \end{gathered}$	$\underset{(243)}{\text { Am }}$	$\underset{(247)}{\mathrm{Cm}}$	$\begin{gathered} \text { Bk } \\ (247) \end{gathered}$	$\underset{(251)}{\text { Cf }}$	$\begin{gathered} \text { Es } \\ (252) \end{gathered}$	$\underset{(257)}{\mathrm{Fm}}$	$\begin{aligned} & \text { Md } \\ & (258) \end{aligned}$	$\begin{gathered} \text { No } \\ (259) \end{gathered}$	$\begin{gathered} \text { Lr } \\ (262) \end{gathered}$

1. How many moles of FeS_{2} are required to produce 32 g of SO_{2} ? $\left(A_{\mathrm{r}}: S=32, \mathrm{O}=16\right)$

$$
4 \mathrm{FeS}_{2}(\mathrm{~s})+11 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+8 \mathrm{SO}_{2}(\mathrm{~g})
$$

A. 0.25
B. 0.50
C. 1.0
D. 2.0
2. The volume of a sample of gas measured at $27^{\circ} \mathrm{C}$ is $10.0 \mathrm{dm}^{3}$. What is the temperature when the volume is reduced to $9.0 \mathrm{dm}^{3}$ at the same pressure?
A. $\quad-3.0^{\circ} \mathrm{C}$
B. $\quad 24.3^{\circ} \mathrm{C}$
C. $\quad 29.7^{\circ} \mathrm{C}$
D. $57.0^{\circ} \mathrm{C}$
3. 16 g of bromine react with 5.2 g of metal, M , to form MBr_{2}. What is the relative atomic mass of the metal M ? $\left(A_{\mathrm{r}}: \mathrm{Br}=80\right)$
A. 13
B. 26
C. 52
D. 104
4. An antacid tablet containing 0.50 g of $\mathrm{NaHCO}_{3}\left(M_{\mathrm{r}}=84\right)$ is dissolved in water to give a volume of $250 \mathrm{~cm}^{3}$. What is the concentration, in moldm^{-3}, of HCO_{3}^{-}in this solution?
A. $\frac{0.250 \times 84}{0.50}$
B. $\frac{0.50}{84 \times 0.250}$
C. $\frac{250 \times 84}{0.50}$
D. $\frac{0.50}{84 \times 250}$
5. Which statements are correct for the emission spectrum of hydrogen?
I. The lines converge at higher frequencies.
II. Electron transitions to $\mathrm{n}=2$ are responsible for lines in the visible region.
III. Lines are produced when electrons move from lower to higher energy levels.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
6. Which statement about ${ }^{56} \mathrm{Fe}^{3+}$ and ${ }^{54} \mathrm{Fe}^{2+}$ is correct?
A. Both have the same numbers of protons and electrons.
B. Both have the same number of protons.
C. Both have the same number of neutrons.
D. Both have the same numbers of protons and neutrons.
7. Which oxides produce an acidic solution when added to water?
I. $\mathrm{Al}_{2} \mathrm{O}_{3}$ and SiO_{2}
II. $\mathrm{P}_{4} \mathrm{O}_{6}$ and $\mathrm{P}_{4} \mathrm{O}_{10}$
III. NO_{2} and SO_{2}
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
8. Which species will require the least energy for the removal of one electron?
A. Na^{+}
B. Mg^{+}
C. Al^{2+}
D. C^{3+}
9. Which species has the same molecular geometry as $\mathrm{SO}_{3}{ }^{2-}$?
A. BF_{3}
B. SO_{3}
C. PF_{3}
D. $\mathrm{CO}_{3}{ }^{2-}$
10. How many lone pairs and bonding pairs of electrons surround the central chlorine atom in $\mathrm{ClF}_{2}{ }^{+}$?
A.

Lone pairs	Bonding pairs
0	2
0	4
2	4
2	2

11. Which compound has the highest boiling point?
A. $\mathrm{CH}_{3} \mathrm{CHO}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~F}$
C. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
12. Which molecule is polar?
A. BeCl_{2}
B. BCl_{3}
C. NCl_{3}
D. CCl_{4}
13. Consider the following reactions:

$$
\begin{array}{ll}
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightarrow 2 \mathrm{FeO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) & \Delta H^{\ominus}=-3 \mathrm{~kJ} \\
\mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{FeO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) & \Delta H^{\ominus}=+11 \mathrm{~kJ}
\end{array}
$$

What is the ΔH^{\ominus} value, in kJ , for the following reaction?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

A. -25
B. -14
C. +8
D. +19
14. Which is correct when $\mathrm{Ba}(\mathrm{OH})_{2}$ reacts with $\mathrm{NH}_{4} \mathrm{Cl}$?

$$
\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H^{\ominus}=+164 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

A.

Temperature	Enthalpy	Stability
increases	products have lower enthalpy than the reactants	products are less stable than the reactants
decreases	products have lower enthalpy than the reactants	products are more stable than the reactants
decreases	products have higher enthalpy than the reactants	products are less stable than the reactants
increases	products have higher enthalpy than the reactants	products are more stable than the reactants

15. Consider the following reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

	Bond enthalpies / kJ mol (at 298K)
$\mathrm{H}-\mathrm{H}$	x
$\mathrm{~N} \equiv \mathrm{~N}$	y
$\mathrm{~N}-\mathrm{H}$	z

Which calculation gives ΔH^{\ominus}, in kJ , for the forward reaction?
A. $2 z-y-3 x$
B. $y+3 x-2 z$
C. $y+3 x-6 z$
D. $6 z-y-3 x$
16. Samples of sodium carbonate powder were reacted with separate samples of excess hydrochloric acid.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Reaction I: $1.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ (s) added to $0.50 \mathrm{moldm}^{-3} \mathrm{HCl}(\mathrm{aq})$
Reaction II: $1.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ (s) added to $2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$
What is the same for reactions I and II?
A. Initial rate of reaction
B. Total mass of CO_{2} produced
C. Total reaction time
D. Average rate of production of CO_{2}
17. What decreases the activation energy of a reaction?
A. Increasing the temperature
B. Adding a catalyst
C. Adding more reactants
D. Increasing collision frequency of reactants
18. Consider the reaction:

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

The values of K_{c} at different temperatures are:

Temperature $/ \mathbf{K}$	$\boldsymbol{K}_{\mathbf{c}}$
838	1.10×10^{-3}
1001	3.80×10^{-1}
1030	8.71×10^{-1}
1053	1.67

Which statement is correct at higher temperature?
A. The forward reaction is favoured.
B. The reverse reaction is favoured.
C. The rate of the reverse reaction is greater than the rate of the forward reaction.
D. The concentration of both reactants and products increase.
19. Which two species act as Brønsted-Lowry acids in the reaction?

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A. $\quad \mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$
B. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$ and $\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})$
C. $\quad \mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
D. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
20. What is the order of increasing pH for the following solutions of the same concentration?
A. $\mathrm{HCl}(\mathrm{aq})<\mathrm{NH}_{3}(\mathrm{aq})<\mathrm{NaOH}(\mathrm{aq})<\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$
B. $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})<\mathrm{HCl}(\mathrm{aq})<\mathrm{NH}_{3}(\mathrm{aq})<\mathrm{NaOH}(\mathrm{aq})$
C. $\mathrm{HCl}(\mathrm{aq})<\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})<\mathrm{NH}_{3}(\mathrm{aq})<\mathrm{NaOH}(\mathrm{aq})$
D. $\mathrm{NaOH}(\mathrm{aq})<\mathrm{NH}_{3}(\mathrm{aq})<\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})<\mathrm{HCl}(\mathrm{aq})$
21. Which is correct for the reaction?

$$
\mathrm{P}_{4}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{PH}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{PO}_{2}^{-}(\mathrm{aq})
$$

A.

Oxidizing agent	Reducing agent
$\mathrm{H}_{2} \mathrm{O}$	P_{4}
P_{4}	OH^{-}
OH^{-}	P_{4}
P_{4}	P_{4}

22. Which describes the flow of electrons in a voltaic cell?
A. From the cathode (positive electrode) to the anode (negative electrode) through the external circuit
B. From the anode (negative electrode) to the cathode (positive electrode) through the external circuit
C. From the oxidizing agent to the reducing agent through the salt bridge
D. From the reducing agent to the oxidizing agent through the salt bridge
23. Which represents a reduction?
A. $\quad \mathrm{SO}_{3}$ to SO_{4}^{2-}
B. $\mathrm{Mn}_{2} \mathrm{O}_{3}$ to MnO_{2}
C. $\mathrm{H}_{2} \mathrm{O}_{2}$ to OH^{-}
D. CrO_{4}^{2-} to $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
24. Which compounds cause the colour of acidified potassium manganate(VII) solution to change from purple to colourless?
I. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
II. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{OH}$
III. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
25. What is the order of increasing boiling point for the isomers of $\mathrm{C}_{5} \mathrm{H}_{12}$?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
B. $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}<\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
26. Which is correct for benzene?
A. It readily undergoes addition reactions and decolourises bromine water.
B. It contains alternate single and double carbon-carbon bonds and is planar.
C. Its ${ }^{1} \mathrm{H}$ NMR spectrum shows six signals and it readily undergoes substitution reactions.
D. Its ${ }^{1} \mathrm{H}$ NMR spectrum shows one signal and it forms a single $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ isomer.
27. Which compounds react to form $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}$?
A. propanoic acid and propan-2-ol
B. propanoic acid and butan-2-ol
C. butanoic acid and propan-1-ol
D. butanoic acid and propan-2-ol
28. Which is correct for the spectra of organic compounds?
A. Mass spectroscopy provides information about bond vibrations.
B. ${ }^{1} \mathrm{H}$ NMR spectroscopy provides the values of carbon-hydrogen bond lengths.
C. Infrared spectroscopy provides the number of hydrogen atoms.
D. Mass spectroscopy provides information about the structure.
29. What is the ratio of areas under each signal in the ${ }^{1} \mathrm{H}$ NMR spectrum of 2-methylbutane?
A. $6: 1: 2: 3$
B. $3: 3: 1: 5$
C. 6:1:5
D. $3: 3: 1: 2: 3$
30. What are the absolute and percentage uncertainties for the change in mass?

Initial mass: $22.35 \pm 0.05 \mathrm{~g}$
Final mass: $42.35 \pm 0.05 \mathrm{~g}$
A.

Absolute uncertainty / g	Percentage uncertainty
± 0.05	0.1%
± 0.10	0.5%
± 0.05	0.5%
± 0.10	0.1%

